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How is memory structured for e�ective 
decision-making?
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Target (terminal) Choice (start) Sequence (start) Sequence (terminal)

Lore
m 

TARGET

2000ms 6000ms 2000ms 2000ms

Reward Training:
Learn robot values (TERMINAL → $)

Choice (terminal)

+1

Reward

6000ms 1500ms

Generalization:
Choose between novel items

Choice (start, novel)

6000ms

N Trials = 140

N Trials = 80

N Trials = 48 N Trials = 32

N Participants = 86

+1

-1

TERMINALSTART

Feature-based Task Structure

Observed outcomes: +1

Underlying structure:
OLD (ABC) block

Segmentation promotes better generalization

Largest proportion of participants 
are best fit by feature model

Participants best fit by the feature 
model generalize best

Higher fit segmentation associated 
with better generalization within 

feature-based fits

Participants successfully learn and generalize the task structure

1. Segmented feature-based learning produces
        generalizable predictive representations 

2.    Working memory may facilitate segmented
        feature-based learning, potentially via its role in
        discretizing information into chunks

Take-aways

ReferencesFuture directions: Identifying segmented predictive representations in the brain
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Representational Similarity Analysis

Hypotheses:
1) Neural segmentation correlated with generalization performance

2) Neural segmentation correlated with computational model segmentation

Higher working memory capacity 
facilitates segmentation

Working memory capacity associated with 
generalization for feature-based fits only

Working memory capacity  
associated with fit

segmentation within
 feature-based fits

E�ect of working memory capacity on generalization 
is mediated by segmentation
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Feature-based Learning

Learning: Learn on conjunctions

Generalization:
No ability to generalize

Learning: Learn on conjunctions

Generalization:
Integrate learning for similar conjunctions

Learning: Learn on features

Generalization:
Integrate learning for familiar features
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Segmentation parameter inhibits cross-feature learning
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Predictive knowledge supports inferences about distant 
future outcomes1

Feature-based representation may produce more 
generalizble predictive knowledge?2
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